The Gibberellin Pathway Mediates KNOTTED1-Type Homeobox Function in Plants with Different Body Plans

نویسندگان

  • Angela Hay
  • Hardip Kaur
  • Andrew Phillips
  • Peter Hedden
  • Sarah Hake
  • Miltos Tsiantis
چکیده

BACKGROUND The shoot apical meristem (SAM) is an indeterminate structure that gives rise to the aerial parts of higher plants. Leaves arise from the differentiation of cells at the flanks of the SAM. Current evidence suggests that the precise regulation of KNOTTED1-like homeobox (KNOX) transcription factors is central to the acquisition of leaf versus meristem identity in a wide spectrum of plant species. Factors required to repress KNOX gene expression in leaves have recently been identified. Additional factors such as the CHD3 chromatin remodeling factor PICKLE (PKL) act to restrict meristematic activity in Arabidopsis leaves without repressing KNOX gene expression. Less is known regarding downstream targets of KNOX function. Recent evidence, however, has suggested that growth regulators may mediate KNOX activity in a variety of plant species. RESULTS Here we show that reduced activity of the gibberellin (GA) growth regulator pathway promotes meristematic activity, both in the natural context of KNOX function in the SAM and upon ectopic KNOX expression in Arabidopsis leaves. We show that constitutive signaling through the GA pathway is detrimental to meristem maintenance. Furthermore, we provide evidence that one of the functions of the KNOX protein SHOOTMERISTEMLESS (STM) is to exclude transcription of the GA-biosynthesis gene AtGA20ox1 from the SAM. We also demonstrate that AtGA20ox1 transcript is reduced in the pkl mutant in a KNOX-independent manner. Moreover, we show a similar interaction between KNOX proteins and GA-biosynthesis gene expression in the tomato leaf and implicate this interaction in regulation of the dissected leaf form. CONCLUSIONS We suggest that repression of GA activity by KNOX transcription factors is a key component of meristem function. Transfer of the KNOX/GA regulatory module from the meristem to the leaf may have contributed to the generation of the diverse leaf morphologies observed in higher plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1.

KNOTTED1 (KN1)-like homeobox (KNOX) transcription factors are involved in the establishment and maintenance of plant meristems; however, few direct targets of KNOX proteins have been recognized. Using a combination of double mutant analysis and biochemistry, we found that in maize (Zea mays), KN1 negatively modulates the accumulation of gibberellin (GA) through the control of ga2ox1, which code...

متن کامل

KNOX Action in Arabidopsis Is Mediated by Coordinate Regulation of Cytokinin and Gibberellin Activities

The shoot apical meristem (SAM) is a pluripotent group of cells that gives rise to the aerial parts of higher plants. Class-I KNOTTED1-like homeobox (KNOX) transcription factors promote meristem function partly through repression of biosynthesis of the growth regulator gibberellin (GA). However, regulation of GA activity cannot fully account for KNOX action. Here, we show that KNOX function is ...

متن کامل

Leaf senescence is delayed in tobacco plants expressing the maize homeobox gene knotted1 under the control of a senescence-activated promoter.

Leaf senescence is an active process involving remobilization of nutrients from senescing leaves to other parts of the plant. Whereas senescence is accompanied by a decline in leaf cytokinin content, supplemental cytokinin delays senescence. Plants that overexpress isopentenyl transferase (ipt), a cytokinin-producing gene, or knotted1 (kn1), a homeobox gene, have many phenotypes in common. Many...

متن کامل

Unraveling the KNOTTED1 regulatory network in maize meristems.

KNOTTED1 (KN1)-like homeobox (KNOX) transcription factors function in plant meristems, self-renewing structures consisting of stem cells and their immediate daughters. We defined the KN1 cistrome in maize inflorescences and found that KN1 binds to several thousand loci, including 643 genes that are modulated in one or multiple tissues. These KN1 direct targets are strongly enriched for transcri...

متن کامل

Genome-wide study of KNOX regulatory network reveals brassinosteroid catabolic genes important for shoot meristem function in rice.

In flowering plants, knotted1-like homeobox (KNOX) transcription factors play crucial roles in establishment and maintenance of the shoot apical meristem (SAM), from which aerial organs such as leaves, stems, and flowers initiate. We report that a rice (Oryza sativa) KNOX gene Oryza sativa homeobox1 (OSH1) represses the brassinosteroid (BR) phytohormone pathway through activation of BR cataboli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2002